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All of mathematical physics either concerns infinitesimal descriptions of reality or global ones[5]. A simple

example of the former is a differential equation, whereas fields like gravitational fields and electromagnetic

fields exemplify the latter. Differential Geometry and Differential Topology provide a language that unifies

this description in the language of bundles. For instance, fields are defined as sections of appropriate bundles.

In fact, a field theory, which is usually formalised as a variational calculus problem and its leading differential

equation, can be prescribed in terms of special bundles called jet bundles. This formalism for field theory

spans both classical and quantum field theory, after suitable modifications.

In the Lagrangian description, the core, unifying idea is the principle of least action. This is com-

puted from a quantity called the Lagrangian Density, from which follow symmetry laws via Noether’s

Theorem[3]. In this article, we limit our focus to the former.

Mathematical Background

Let C be a category, E,M P Obj pCq and π P HomC pE,Mq. The pair pE,M, πq is called a bundle where E

is called the total space, B is the base space of the bundle and π is called the projection of the bundle.

A morphisms of two bundles π1 : E1 ÝÑ M1 and π2 : E2 ÝÑ M2 is given by the expected commutative

diagram

E1 E2

M1 M2

π1

f̃

π2

f

In the category C of topological spaces, a particular case of a bundle is the fiber bundle: this is a tuple

pE,M, π, F q where π P HomC pE,Mq is surjective that is locally trivial: for each x P M , there exists an

open set Ux � M of x such that ϕ : π�1 pUxq
�
ÝÑ Ux � F with ϕ compatible with the natural projection

onto Ux. That is, the following diagram commutes:

π�1pUxq Ux � F

Ux

π

ϕ

It is in this sense that the space E looks locally like a product. The space F is called the fiber of the fiber

bundle and U is called the trivialising neighborhood. A trivial example is given by E � M � F with π

defined as its canonical projection and ϕ � id.

Again, a morphism between two fiber bundles pE1,M1, π1, F1q and pE2,M2, π2, F2q with trivializations

ϕ1 : π�1
1 pU1q

�
ÝÑ U1 � F1 and ϕ2 : π�1

2 pU2q
�
ÝÑ U2 � F1, is given by the first commutative diagram with

the additional constraint

U2 � F2 π�1
2 pU2q π�1

1 pU1q U1 � F1

U2 U1

π1

ϕ1f̃

f

Some authors require that, for a base point p P B, π�1 ppq � F , or that π�1 ppq � F for every p. For a

covering space and a manifold, the former and later respective requirement is a direct consequence of the
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respective definition: recall that a covering space is a surjective map π : �M ÝÑ M such that, for each

x P M , there exists a neighborhood U such that π�1 pUq is a disjoint union of open sets, each of which is

homeomorphic to U . The number of such disjoint open sets, called the evenly covered sets, is given by |F |.

In this sense, a covering space is “locally discrete”.

If F is a K-vector space of dimension n, then a fiber bundle is called a vector bundle of rank n,

provided that the restriction ϕ|π�1pxq : π�1 pxq
�
ÝÑ txu � F � Fx is a K-linear map. A morphism between

two vector bundles is, therefore, a morphism of two fiber bundles with the additional requirement thatrf : π�1
1 pxq ÝÑ π�1

2 f pxq is a K-linear map.

Much like a manifold with an atlas, we need to consider what happens if, for an x P M , we have

overlapping, trivialising neighborhoods U and V of a vector bundle; so let ϕU : π�1 pUq
�
ÝÑ U � F and

ϕV : π�1 pV q
�
ÝÑ V � F be homeomorphisms. Observe that ϕV � ϕ

�1
U is an endomorphism of pU X V q � F

(modulo relevant domain restrictions). Since both ϕV and ϕU are isomorphisms, ϕV �ϕ
�1
U is an isomorphism

of the vector space txu � F for each x P U X V . To be more precise, since we are assuming that U X V �� ∅
and, in particular, x P U X V , the maps ϕU |π�1pxq and ϕV |π�1pxq are equal and well-defined isomorphisms

of vector spaces. Let gV U : U X V ÝÑ GLn pKq denote the function that assigns this isomorphism to x.

These functions are called transition functions. The inverse g�1
V U is defined by the K-linear isomorphism�

ϕV � ϕ
�1
U

��1
� ϕU � ϕ�1

V , which is precisely gUV . That is, g�1
V U � gUV . Now for x P U X V XW , the

composition of two such transition functions gUV and gVW is readily a K-linear isomorphism. However,

observe that ϕU �ϕ
�1
W is an endomorphism of pU X V XW q�F and that ϕU �ϕ

�1
W � ϕU � idUXVXW �ϕ�1

W �

ϕU �
�
ϕ�1
V � ϕV

�
� ϕ�1

W �
�
ϕU � ϕ

�1
V

�
�
�
ϕV � ϕ

�1
W

�
. Thus, gUW � gUV gVW , which is called the cocycle

condition.

This additional information, of course, depends on the nature of F . Regardless of what space F is, the

restriction ϕ|π�1pxq provides the sense in which each x P M is said to parameterise the space Fx. Such is

the situation if M is a (differentiable) manifold and E is its tangent bundle TM , in which case the fiber

Fx is actually the tangent space TxM . The tangent bundle is constructed as the disjoint union of tangent

spaces TxM over x PM . Thus, the tangent bundle is a special case of the vector bundle. Corresponding to

the trivial fiber bundle, the trivial vector bundle is similarly given by E �M �F where F is a vector space.

A line bundle is a vector bundle of rank 1. A special kind of vector bundle, called the tensor bundle,

comprises of vector spaces V over K and their duals V _ :� HomK pV,Kq. For example, if

pl,kq pV q :� V b V b ...b Vlooooooooomooooooooon
l copies

b V _ b V _ b ...b V _loooooooooooomoooooooooooon
k copies

called covariant tensors on V of rank l and contravariant tensors1 of rank k, then a tensor bundle

may be defined as a disjoint union of (covariant and/or contravariant) tensors on tangent spaces TxM over

x P M . This machinery allows us to collect alternating contravariant tensors of rank k to define the vector

space Λk pV _q �p0,kq pV _q of very special K-linear maps called exterior forms. In fact, the (vector) bundle

Λk pT_Mq is constructed as the disjoint union over x PM of Λk pT_x Mq.

Bundles allow for a coordinate-free definition of fields: if π : TM ÝÑ M is a tangent bundle, then a

vector field is a map f : M ÝÑ TM such that π �f � idM . That is, a (covariant) vector field is a section of

the vector bundle. In similar vain, and according to our terminology, a contravariant vector field would thus

be a section of the bundle T_M ÝÑM . Similarly, a tensor field is a section of a tensor bundle. A section

of Λk pT_Mq over M is a special vector field, called the differential form of rank k or a differential k

1In Physics, this convention is reversed.

2



-form, the collection of which is denoted by Ωk pMq. Differential forms allow integration on (orientable)

manifolds.

In the absence of a sensible notion of orientation, the natural generalization of this is a density. If V

is a vector space over K, a density is, in particular, a function µ P HomK pV � ...� V,Kq such that, for any

T P HomK pV, V q,

µ pTv1, ..., T vnq � |detT |µ pv1, ..., vnq

The concept of a density is closely tied with orientation. Let o P o pV q :� HomK pV � ...� V,Kq be a function

such that for any T P EndK pV q,

o pTv1, ..., T vnq � sign pdetT qo pv1, ..., vnq .

Such a function which in addition satisfies |o pv1, ..., vnq| � 1 for linearly independent vectors v1, ..., vn is

called an orientation.

Note that for ω P Λn pV _q, the map |ω| : V � V � ...� V ÝÑ K, defined by

|ω| pv1, ..., vnq :� |ω pv1, ..., vnq|

(assuming that the field K has a valuation defined on it) is a density. If D pV q is the collection of densities on

V , then D pV q is a 1 dimensional vector space spanned by |ω| for any nonzero ω P Λn pV _q. This is because

if tv1, ..., vnu are a basis for V and for any α P D pV q, we have equality of functions

α �

�
α pv1, ..., vnq

|ω| pv1, ..., vnq



|ω|

The uni-dimensionality of D pV q follows since the functions above agree on the basis tv1, ..., vnu. Note that

the value |ω| pv1, ..., vnq is nonzero, for otherwise ω (or, equivalently, |ω|) would be trivial.

Similarly, the obvious re-arrangement of the equation ω � o |ω| tells us that o pV q is uni-dimensional, as

well.

The density bundle D pMq is then a smooth (line) bundle over M , constructed as the disjoint union of

D pTxMq over x PM . By the above construction, it is clear that D pMq � Λn pT_Mq b o pMq, where o pMq

is the orientation line bundle on M where, for each x PM , the fiber is o pTxMq. Thus, if M is oriented,

then D pMq � Λn pT_Mq and we have our familiar calculus on the manifold. A density, in general, is a

section of the density bundle. Therefore, for an n-dimensional manifold M , a density is a tensor field, which

in local coordinates xi at a point x PM , may be written as α pxq dx1 ^ dx2 ^ ...^ dxn for some real-valued

function α.

The collection of densities is written as Ω|0| pMq. To see why this makes sense, define Ω|�q| pMq :�

Ωn�q pMq b o pMq as the collection of twisted pn� qq-forms. A density is then a twisted 0-form viz. an

element of Ωn pMq b o pMq. An alternative way to see this is sections of the tensor product of Λq pTMq b

Λn pT_Mq b o pMq � Λn�q pT_Mq b o pMq. This explains the function α pxq P Λ0 pTMq � C8 pMq. Thus,

for example, an element of Ω|�1| pMq may be of the form, in local coordinates xi at a point x PM ,

αj pxq
B

Bxj
b
�
dx1 ^ dx2 ^ ...^ dxn

�
for some j P t1, ..., nu.
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This allows us to define a graded module of twisted forms

Ω|�| pMq �
nà
q�0

Ω|�q| pMq

This is the de Rahm dg-algebra Ω� pMq under wedge product but with the index reversed. That is, we have

an exterior derivative d : Ω|�q| pMq ÝÑ Ω|�q�1| pMq.

We need some more machinery. A fibered bundle (not ‘fiber’) is a bundle π : E ÝÑM such that π is a

submersion. That is, the pushforward Tπ is also surjective. If E is a vector bundle, then surjectivity of Tπ

implies that the linear map Tyπ : TyE ÝÑ TπpyqM has rank equal to the dimension of B. Therefore, every

fiber bundle is a fibered bundle. However, for a fibered bundle, the fibers π�1 pxq may not be the same space,

let alone a vector space. For example, the natural projection map in the first variable π : R2z tp1, 0qu ÝÑ R
is of course surjective and a submersion. However, π�1 p1q is disconnected, unlike π�1 px �� 1q.

Recall that if dimE � m ¡ dimM � n, then Tπ is surjective. This is also useful in proving that the

surjective map π : E ÝÑM is a submersion if and only if for all y P E, there exists a chart pU,ϕq centered

at y and a chart pπ pUq , ψq centered at f ppq such that the following diagram commutes:

U πpUq

p�a, aqn � p�a, aqm�n p�a, aqn

π

ϕ ψ

pr1

In general, surjective submersions are open maps. Thus, fibered bundles admit local sections s P Γ pU,Eq

for some open subset U of M . That is, for each y P E, D open subset U Q π pyq of M and a function

s : U ÝÑ E such that π � s � idU . Two local sections s1 and s2 about x P M are equivalent if, with

respect to some adapted coordinate chart (and hence any adapted chart[2]), all the partial derivatives of s1

and s2 agree up to order k at x. This is clearly an equivalence relation, justifying the use of the symbol

jk psq pxq for the equivalence class of sections s at x whose partial derivatives agree up to order k. Let

Jk pEq �
 
jk psq pxq : x PM

(
and define the jet bundle πpkq : Jk pEq ÝÑ M with πpkq

�
jk psq pxq

�
� x. It is

customary to identify J0 pEq � E and π0 � π. If pU,ϕq is a chart on E, then the k-induced chart
�
Uk, ϕk

�
on Jk pEq is defined by Uk �

 
jk psq pxq : s pxq P U

(
. This makes Jk pEq ÝÑM a fibered manifold with the

fiber over x P M being defined by
 
jk psq pxq : s P Γ pM,Eq

(
. Note that if sections s1 and s2 agree up to

order j, then they agree up to all orders before i. Therefore, for i ¤ j, we can define πij : Jj pEq ÝÑ J i pEq

via πij
�
jj psq pxq

�
� ji psq pxq. Note that, for m ¤ i ¤ j, πmj � πmi � πij . This constitutes an inverse system

and allows us to construct the infinite jet bundle J8 pEq as an inverse limit in k of Jk pEq.

Background on Koszul Complexes

Let M be a module, R a ring and let Mq be the product of M with itself q times. We know that we can

construct the module of alternating tensors ΛqM via

Mq P

ΛqM

λq
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where P is any R-module. This allows us to define the skew-commutative graded algebra

Λ�M �
à
n

ΛnM

with multiplication ΛkM � ΛlM ÝÑ Λk�lM via pa, bq ÞÑ a^ b � p�1q
ij
b^ a. For ω : M ÝÑ R, the map

mq : Mq ÝÑ Λq�1M

defined via

pv1, v2, ..., vqq ÞÑ
¸
i

ω pviq p�1q
i�1

v1 ^ v2 ^ ...^ pvi ^ ...^ vq

is easily seen to be multilinear and hence factors through

ωq : ΛqM ÝÑ Λq�1M

If a P ΛkM and b P Λq�kM , then ωq pa^ bq � ωk paq ^ b� p�1q
k
a^ωq�k pbq. To show this, consider the

diagram

Mk �Mq�k Mq

ΛkM � Λq�kM ΛqM

coming from two different constructions placed side-by-side. This diagram commutes because the upper

arrow is a canonical isomorphism. The next thing to note is that

ωk paq ^ b� p�1q
k
a^ ωq�k pbq � ωk paq ^ b^ pa� p�1q

k
a^ ωq�k pbq ^pb

Couple this with ωkλk � mk and apply iteratively.

From this, it follows that ωn � ωn�1 � 0 for all n and we have ourselves a complex, called the Koszul

Complex of ω. To show this by (strong) induction, if we agree to let Λ�1M � t0u, Λ0M � R, Λ1M � M

and ω1 � ω, then the case for n � 0 is trivial. For n � 1,

ω1 � ω2 pa^ bq � ω1 pω1 paq ^ b� a^ ω1 pbqq

� ω pω paq b� ω pbq aq

� ω paqω pbq � ω pbqω paq � 0

Let a P ΛkM and b P Λq�1�kM to give

pωq � ωq�1q pa^ bq � ωq

�
ωk paq ^ b� p�1q

k
a^ ωq�1�k pbq

	
� ωq pωk paq ^ bq � p�1q

k
ωq pa^ ωq�1�k pbqq

� ωk�1 pωk paqq ^ b� p�1q
k�1

ωk paq ^ ωk�1 pbq �

p�1q
k
�
ωk paq ^ ωq�k pbq � p�1q

k
a^ ωqωq�1�k pbq

�
� p�1q

k�1
ωk paq ^ ωk�1 pbq � p�1q

k
rωk paq ^ ωq�k pbqs � 0
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Lagrangian Field Theory

Consider the mapping space F � Γ pM,Eq � HomDiff pM,Eq of sections of E over M . HomDiff pM,Eq is

a manifold in its own right, modelled after the Fréchet space, assuming that M and E are nice enough.

Loosely speaking, M plays the role of the event space – the configuration space – and E plays the role of

the universe of possible states. If E is a tangent bundle, then E is called the configuration manifold. If E is

the cotangent bundle, then E is called the phase space. If M � M1 is one-dimensional, then we can think

of F as modelling particle’s behavior over time on E � R3, say. Such is the case for Newtonian mechanics.

A similar description holds for Minkowksi space M � Mn. In Hamilton’s mechanics, the manifold M is

replaced with X �M1 for some symplectic manifold X. The formalism of fields holds generally in that F
plays the role of functions modelling a particle’s behavior and, therefore, houses the phase space M � F . In

physics parlance, an element of F is called a field. Thus, if E �M �R is the trivial bundle, F comprises of

scalar fields. For multiple fields φi considered simultaneously over bundles Ei, the fiber product E �
�

iEi

may be utilized.

The goal of Lagrangian Field Theory is to determine functions φ P F that satisfy the Lagrangian operator

used in conjunction with Principle of Least Action. That is, if S P HomDiff pF ,Rq, then M is the critical

manifold, (ideally) determined by functions satisfying dS � 0. One natural setting for this is in terms of

differential forms on F and twisted forms on M . This allows us to model the Lagrangian density L : F ÝÑ

D pMq.

To see why, we first construct a double complex Ω
,|
| pF �Mq of fields F and twisted forms on M ,

with the (total) exterior derivative written as D � δ � d, where d : Ω|�q| pMq ÝÑ Ω|�q�1| pMq and δ :

Ωk pFq ÝÑ Ωk�1 pFq obeying d2 � δ2 � 0 and dδ � �δd, so that D2 � 0. For a fixed p, α P Ωp pFq and

β P Ω|�q| pMq, we write d pα^ βq � p�1q
p
α^dβ. One natural interaction of this double complex is captured

in the following:

Lemma 1 Let φ P F � Γ pM,Eq � HomDiff pM,Eq and assume that M is compact. Then, TφF is naturally

isomorphic to the pullback vertical bundle Ω0 pM ;φ� pE{Mqq � Γ
�
φ� pE{Mq b Λ0T_M

�
� Γ pM,φ� pE{Mqq.

Proof. First let proj1 : E �M�X ÝÑM be a trivial vector bundle. The general argument is similar. In this

case, F � HomDiff pM,Eq � C8 pM,Eq. We must first construct the tangent bundle of E. One component

of this is the tangent bundle πM : TM ÝÑM . Moreover, since X is a vector space, TxX � X�txu (so that

TX � X � X). Thus, for e � pm,xq P M � X � E, we can have the tangent space TeE � TmM � TxX.

We, therefore, have the following diagram:

E �M �X M

0 kerpTproj1q TE TM 0

proj1

Tproj1

πE πM

where

TM �
§
mPM

TmM , TE �
§
ePE

TeE �
§

pm,xqPE

TmM � TxX � TM � TX

and, for each e � pm,xq, kere pTproj1q � tmu�X. Therefore, ker pTproj1q �M �X �X �M � TX is the

vertical tangent bundle E{M � V E of E.

Now let φ be a section of E over M and consider the pullback bundle πE{M : φ� pE{Mq ÝÑM and the

diagram
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M

φ�V E V E TE

M M �X

s̃

idM

πE{M

i

πE

φ

The sections of this bundle – a dotted arrow above after a choice of s̃ – form the collection Ω0 pM ;φ� pE{Mqq.

The pullback bundle is constructed via the usual φ� pE{Mq � tpm, ξq PM � V E : φ pmq � pπE � iq pξqu.

Now, F comprises of paths φε defined ε : I ÝÑ φε over a real interval I containing 0 with φ0 � φ such that

tangent vectors s P TφF satisfy the expected s � d
dεφε

��
ε�0

. The second ingredient we need is the observation

that s P TφF ðñ s pmq P TφpmqE � V E. This gives us our rs and hence establishes the correspondence.

Lagrangian densities L : F ÝÑ D pMq are elements of Ω0,|0| pF �Mq, where L pφq is a density. A zero-

form on F is a smooth function and gets absorbed in the density. Lagrangians are local. Loosely, this

means one considers energy distribution around the ‘neighborhood’ of a particle whose Lagrangian is under

consideration.

This can be made mathematically precise. Consider the form α P Ωp,|�q| pF �Mq at a point pφ,mq P

F �M . If ξ1, ..., ξp P TφF , the twisted pn� qq-form αpφ,mq pξ1, ..., ξpq at m is said to be local if, for some

integer k, α only depends on jk pφq pmq and jk pξiq pmq for 1 ¤ i ¤ p. This definition can be recast in

terms of sections, and requires the following ingredients: by Lemma 1, each ξi corresponds to a section of

φ� pE{Mq � φ� pV Eq; the k-jet bundle πpkq : JkE ÝÑM gives us p-forms Ωp
�
JkE{M

�
, and, of course, we

need to pull back the bundle Ω|�q| pMq ÝÑM through πpkq:

ΩpJkpV Eq πpkq
�

Ω|�q|pMq Ω|�q|pMq

JkpV Eq

JkE M

Together, these bundles over JkE give us the bundle σ : Ωp
�
JkE{M

�
b πpkq

�

Ω|�q| pMq ÝÑ Jk pEq. A

section of this bundle is a local form. In particular, local forms depend on vector fields on M .

The collection of such local forms gives us a subcomplex
�

Ω
p,|�|
loc pF �Mq , d

	
with differential

d : Ωp
�
JkE{M

�
b πpkq

�

Ω|�q| pMq ÝÑ Ωp
�
Jk�1E{M

�
b πpk�1q�Ω|�q�1| pMq

Takens’ Theorem

The main theorem, originally presented in [6], is the following:

Theorem 2 (Takens) For p ¡ 0, the complex
�

Ω
p,|
|
loc pF �Mq , d

	
of local (twisted) forms is exact, except

in the top degree |
| � 0

This follows directly from the following generalization:
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Theorem 3 (Takens) Let E ÝÑ M be a submersion, p P Z¡0 and let Vi ÝÑ E be vector bundles for

i � 1, ..., p. If

V �
¹
E

Vi

is the fiber product over E, φ P Γ pM,Eq is a section, and if we let Vφ be the space of sections of φ�V ÝÑM ,

then the subcomplex
�

Ω0,

loc,mult pVφ �Mq , d

	
of forms α pφ, ξ1, ..., ξpq which are R-multilinear in ξi, is exact,

except in the top degree 
 � 0.

The forms α pφ, ξ1, ..., ξpq depend locally on φ and on sections ξi of φ�Vi.

The former follows from latter for, say p � 1, if we agree to call this case that of the trivial vector bundle

E � t�u ÝÑ E. We have Vφ � Γ pM,Eq by virtue of commutativity of the diagram

φ�V E � t�u � V

M E

proj1

φ

since φ�V � tpm, e0q PM � V : φ pmq � proj1 pe, �q � eu, which is just the graph of φ and, therefore, corre-

sponds to the image of φ.

We want Ω0,

loc,mult pVφ �Mq to correspond to Ω

p,|
|
loc pF �Mq. What we have at our disposal is a fibration

V
Π
ÝÑ E from V

projiÝÑ Vi
πiÝÑ E with πi�proji � πj�projj for all i, j P t1, ..., pu. We assume that E

is connected, in which case all fibers Vi are isomorphic. Thus, V is a vector bundle over E with fibers

isomorphic to Vi. We want to consider bundles over M , so it is natural to invoke pullbacks, in which

case φ�V � tpm, vq PM � V : φ pmq � Π pvqu. The form α P Ω0,

loc,mult pVφ �Mq is local when it depends

on the k-jet of the section φ of E{M and the k-jet of sections ξi of φ�Vi. To see this, first observe that

Γφ pM,V q � Vφ, thus justifying the replacement for F and the choice of section φ. The isomorphism holds

because each unlabelled dashed arrow in the diagram below is an element of Vφ. The latter part of the

definition is justified as a consequence of Lemma 1. In fact, if all of the vector bundles are replaced with

the vertical bundle, then the proof of Lemma 1 tells us that Ω
p,|
|
loc pF �Mq is the antisymmetric part of

Ω0,

loc,mult pVφ �Mq. Finally, the bundle φ�V ÝÑ M can be given a consistent orientation, so that twisted

forms are isomorphic to ordinary forms.

Note that the sections ξi correspond to fi, gi : M ÝÑ Vi and that πi � fi � πi � gi � φ because φ�Vi is

the categorical pull-back. The pull-back lemma implies that the complete diagram commutes:

M

φ�V V

φ�Vi Vi

M E

idM

ξj

pi

π�i
πi

φ

The proof is found in [3], pp 188-190.

Proof. Let π : E ÝÑ M be a submersion with M of rank m and let π pe0q � m0. Let pU, xq be chart

containing m0 such that W � F � U � π�1 pUq with F a rank f vector space. After appropriate local
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trivializations of Vi on W , we can write, say, α P Ω
0,|�q|
loc,mult pVφ �Mq as

α pφ, ξ1, ..., ξpq �
¸
αn1,...,np

pφq Bn1ξ1...B
npξp (1)

The indices ni would have been simpler, if we had Vφ � F . However, since sections are of φ�V over M

and V is a fiber product of Vi (over E), each ni � pni1 , ni2 , ..., nimq is a multi-index and the operator

Bni :� B
ni1
1 B

ni2
2 ...B

nim
m in a chosen coordinate system x �

�
x1, ..., xm

�
. The order of Bni is given by

|ni| �
m̧

j�1

nij .

Since α is local, by definition, for some k P Z, each αn1,...,np depends only on the k-jet φ and so, we can

write

αn1,...,np
: Jk pE{Mq ÝÑ πpkq

�

pΩq pMqq b
pâ
i�1

πpkq
�

V _
i

where πpkq : Jk pE{Mq ÝÑ M . In order to define a complex, we need to have an increasing index, which

we can sort by order of the (partial) derivative. One problem, however, is that the order of Bni is agnostic

about the permutation of the indices nij . If we let

N �
p̧

i�1

|ni| ,

where |ni| � ni1 � ni2 � ...� nim , we can construct an increasing filtration, for each q,

F0 � F1 � ... � FN � FN�1 � ...

with the differential dN : FN ÝÑ FN�1. In local coordinates, the differential would be

d
�¸

αn1,...,np
pφq Bn1ξ1...B

npξp

	
�

¸
p�1q

p
αn1,...,np

pφq d pBn1ξ1...B
npξpq

Note that because the grading is based on order of the derivative, and the derivative Bni is independent of

the choice of local coordinates. Let Jk be the collection of sections α below:

α : Jk pE{Mq ÝÑ
pâ
i�1

â
|ni|¤k

πpkq
�

Sym|ni| pTMq b πpkq
�

V _
i b πpkq

�

pΩq pMqq (2)

We construct GrF
�

Ω0,q
loc,mult

	
as a limit of the following cone

Ji Jj

GrFq

fij

where, for i ¤ j, the transition fij map is the pullback of πij : Jj pE{Mq ÝÑ J i pE{Mq via πij
�
jj psq pxq

�
�

ji psq pxq. The idea here is that each (coordinate free) derivative Bni has a corresponding symbol in

9



Sym|ni| pTMq and the degree N is the sum of the degrees |ni|. This allows us to write

GrF
�

Ω0,q
loc,mult

	
�

à
N�0

FN�1{FN :�
à
N�0

GrqN

In fact, the differential dN induces

d : GrqN ÝÑ Grq�1
N�1

via (2) as

d :
pâ
i�1

â
|ni|¤k

πpkq
�

Sym|ni| pTMq b πpkq
�

V _
i b πpkq

�

pΩq pMqq

ÝÑ
pâ
i�1

â
|ni|¤k�1

πpk�1q�Sym|ni| pTMq b πpk�1q�V _
i b πpk�1q�

�
Ωq�1 pMq

�
Modulo tensorization with V _

i and the pullback, d can be described by the map

pâ
1

Sym� pTMq b Ωq pMq ÝÑ
pâ
1

Sym� pTMq b Ωq�1 pMq

in local terms: if telu is a basis for TM , s P
pÂ
j�1

Sym� pTMq and ζ P Ωq pMq, then

sb ζ ÞÑ

�¸
l

�
p̧

i�1

1b ...b pel at the ith placeq b ...b 1

�
.s

�
b el ^ ζ (3)

We can, therefore, consider the complex

part of degree N � q of
pâ
1

Sym� pTMq ,

tensored with Ωq pMq. The chain map for this complex is given by Eq (3). We will be done if we can show

that this complex is exact, except in the top degree. We do this point-by-point, so let m0 P M . Our focus

then turns to a complex with components

pâ
1

Sym� pTm0
Mq b Λq

�
T_m0

M
�

Recall that
pâ
1

Sym� pTm0
Mq � Sym�

�
pà
1

Tm0
M

�
The homeomorphism ∆ : Tm0

M ÝÑ Tm0
M � Tm0

M � ...� Tm0
M (p-times) given by t ÞÑ pt, t, ..., tq allows

us to identify Tm0M within
pÀ
1
Tm0

M . Thus, we can write, for some subspace S,

pà
j�1

Tm0
M � S `∆ pTm0

Mq � S ` Tm0
M

10



which allows us to re-write

Sym�

�
pà
1

Tm0
M

�
� Sym� pS ` Tm0

Mq � Sym� pSq b Sym� pTm0
Mq

Thus, the complex locally is

pâ
1

Sym� pTm0Mq b Λq
�
T_m0

M
�
� Sym� pSq b Sym� pTm0Mq b Λq

�
T_m0

M
�

The homological degree of Sym� pSq is zero and the degree of latter two combined is q. The complex is

then
�
Sym� pTm0

Mq b Λq
�
T_m0

M
�
, d
�

where d is again induced by Eq (3): if telu are the basis for Tm0
M

and
 
el
(

are the dual basis for T_m0
M , then

d : Sym� pTm0
Mq b Λq

�
T_m0

M
�
ÝÑ Sym� pTm0

Mq b Λq�1
�
T_m0

M
�

given by

sb ζ ÞÑ
¸
l

�
pel.sq b

�
el ^ ζ

��
Note that if we write Tm0

M � A`B, then

Sym� pA`Bq b Λ
 pA_ `B_q � Sym� pAq b Sym� pBq b pΛ
 pA_q b Λ
 pB_qq

� pSym� pAq b Λ
 pA_qq b pSym� pBq b Λ
 pB_qq

Breaking up the finite dimensional space Tm0M into one-dimensional components gives us one-dimensional

respective complexes. Moreover, the equivalence

Λq pA_ `B_q �
à

a�b�q

ΛaA_ b ΛbB_

tells us that to check acyclicity at the top degree, we might as well focus on the case when dimTm0
M � 1.

Thus, the case we have is that of

Sym� pKq b Λ
 pK_q � K rXs b pK`K_q

� pK rXs bKq` pK rXs bK_q

for a field K of characteristic zero and the only non-trivial differential mX we have is

0 ÝÑ K rXs � K rXs bK
mXÝÑ K rXs bK_ � K rXs ÝÑ 0

If γ is some scalar, then f pXq b γ � pγfq pXq b 1 ÐÑ pγfq pXq � g pXq gets mapped to d pg pXqq �

Xg pXq b dX � Xg pXq b 1 ÐÑ Xg pXq and so, mX is multiplication by X. The homology in degree 0 is

H0 � kermX{ t0u � t0u whereas homology in degree 1 is H1 � R rXs {mX pR rXsq � R.
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Another way to show the same argument is as follows: define homotopy H as

H psb ζq �

$&% 0 if deg s � 0 and if deg ζ � dimTm0M
1

deg s�dimTm0
M�deg ζ

°
l

Bel psq b ιel pζq otherwise

and extend linearly, where ιel : T_m0
M ÝÑ K is defined by ιel pζq pρ1, ..., ρq�1q � ζ pel, ρ1, ..., ρq�1q. If

P : Sym� pTm0Mq b Λq
�
T_m0

M
�
ÝÑ Sym0 pTm0Mq b Λn

�
T_m0

M
�
� Sym� pTm0Mq b Λq

�
T_m0

M
�

where

dimTm0M � n and P defined using the natural maps available.

... Sym� pTm0Mq b Λq
�
T_m0

M
�

Sym� pTm0Mq b Λq�1
�
T_m0

M
�

...

... Sym� pTm0
Mq b Λq

�
T_m0

M
�

Sym� pTm0
Mq b Λq�1

�
T_m0

M
�

...

d d

d d

PH id

d

PH id

Now, if deg s � 0 and if deg ζ � dimTm0
M , then d is the trivial map and so is dH �Hd and the identity

map coincides with P . In the other case,

pdH �Hdq psb ζq � dH psb ζq �Hd psb ζq

� d

�
1

deg s� dimTm0M � deg ζ

¸
l

Bel psq b ιel pζq

�
�H

�¸
l

�
pel.sq b

�
el ^ ζ

���

�
1

deg s� dimTm0M � deg ζ

¸
l

d pBel psq b ιel pζqq �
¸
l

H
�
pel.sq b

�
el ^ ζ

��
�

1

deg s� dimTm0
M � deg ζ

¸
l

¸
j

pej .Bel psqq b
�
ej ^ ιel pζq

�
�

¸
l

1

deg el.s� dimTm0
M � deg el ^ ζ

¸
j

Bej pel.sq b ιej
�
el ^ ζ

�
�

1

deg s� dimTm0M � deg ζ

¸
l

¸
j

pej .Bel psqq b δjlζ �

¸
l

1

deg el.s� dimTm0M � deg el ^ ζ

¸
j

Bej pel.sq b δlj ^ ζ

�
1

deg s� dimTm0M � deg ζ

¸
l

pel.Bel psqq b ζ �

¸
l

1

deg el.s� dimTm0
M � deg el ^ ζ

Bel pel.sq b ζ

�
1

deg s� dimTm0
M � deg ζ

sb ζ �¸
l

1

deg el.s� dimTm0M � deg el ^ ζ

�
s� p�1q|

s| elBel psq
	
b ζ

� sb ζ � P psb ζq

Thus, dH �Hd � id� P .

Now, to show that this local argument can be extended globally, let tWjujPI be a cover of E and let
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tχjujPI be a partition of unity tWjujPI such that the closure te : χj peq �� 0u � Wj . That is, tχju is a

collection of maps of compact support on E to r0, 1s such that for every e P E, (a) D a neighborhood V � E

of e such that all but finitely many χj are zero and (b)¸
j

χj peq � 1

We can write a corresponding equation to (1) in local coordinates on each Wj , end up with homotopy Hj

as above and then define homotopy H pαq � ΣHj pχj pαqq, we again have

id�pdHj �Hjdq � P : Sym� pSqbSym� pTm0
MqbΛq

�
T_m0

M
�
ÝÑ Sym� pSqbSym0 pTm0

MqbΛn
�
T_m0

M
�

glued together to give id� pdH�Hdq. That is, to yield a map FN ÝÑ FN�1. If α P FN such that dα � 0,

then

α1 :� pid� pdH �Hdqq pαq � id pαq � pdH �Hdq pαq � α� dH pαq �Hd pαq � α� dH pαq

is in FN�1. Thus, α � α1 � dH pαq. Note that d pα1q � d pα� dH pαqq � dα � d pdH pαqq � 0 and so, α1 is

closed. Thus, we can repeat the above argument to have α2 closed such that α1 � α2 � dH pα1q, eventually

ending up with αpNq P F�1 and α � αpNq � d ptermsq � dβ.

In Classical Field Theory, the k-jets for Lagrangian Densities L (generally called source forms) are

usually restricted to the case of k � 1 and so, it defines a p1, | � 1|q-form, called a variational 1-form γ with

DL � δL � dγ. By Takens’ Theorem, this γ is guaranteed to exist. The decomposition of DL is unique,

up to dβ where β is a local p1, | � 1|q-form. The Euler Lagrange Equations, following the principle of least

action, are given by DL � 0, which cut out phase space M of fields, via differential equations of a system

under investigation. Moreover, γ can also be used to determine a conservation law of the Lagrangian system

under consideration. This is the content of [7]. In fact, the pair pL, γq defines a field theory.

Future Work

We have seen that jet bundles describe the way local forms in general and Lagrangians in particular operate,

answering questions about existence of Lagrangians and their variations. However, there are cases where

the action functional may not exist and thus Principle of Least Action fails to be defined, even if, as is

always the case, the variation is always defined. Dissipative forces are a guiding example, and a workaround

for them might be in extension of the phase space or considering multiple interacting systems on the same

manifold. This leads to multiple Lagrangians in different coordinate frames, which raises issues of gluing the

Lagrangians. A possible answer is via multivalued jets[1] for Classical Field Theory. A natural step further

is to use Lie algebroids as a generalization of the jet bundles. This might offer a way to strengthen the

variational complex for general field theories. One challenge that may arise is that gluing of these ‘higher

jet bundles’ may not behave very nicely. To aid this development, Lie algebroids can be treated as L8

spaces[4], allowing ready translation to the gluing problem. Our future line of work is then an investigation

into the translation of the infinite jet bundle as a Lie algebroid first and, later on, applying it to a variational

bicomplex for general field theories.
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