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All of mathematical physics either concerns infinitesimal descriptions of reality or global ones|5]. A simple
example of the former is a differential equation, whereas fields like gravitational fields and electromagnetic
fields exemplify the latter. Differential Geometry and Differential Topology provide a language that unifies
this description in the language of bundles. For instance, fields are defined as sections of appropriate bundles.
In fact, a field theory, which is usually formalised as a variational calculus problem and its leading differential
equation, can be prescribed in terms of special bundles called jet bundles. This formalism for field theory
spans both classical and quantum field theory, after suitable modifications.

In the Lagrangian description, the core, unifying idea is the principle of least action. This is com-
puted from a quantity called the Lagrangian Density, from which follow symmetry laws via Noether’s

Theorem[3]. In this article, we limit our focus to the former.

Mathematical Background

Let C be a category, E, M € Obj (C) and 7 € Hom¢ (F, M). The pair (E, M, ) is called a bundle where F
is called the total space, B is the base space of the bundle and 7 is called the projection of the bundle.
A morphisms of two bundles m : F; — M; and my : F5 —> M5 is given by the expected commutative

diagram

E1$>E2

’”l lwz

M1L>M2

In the category C of topological spaces, a particular case of a bundle is the fiber bundle: this is a tuple
(E,M,n,F) where m € Hom¢ (E, M) is surjective that is locally trivial: for each = € M, there exists an
open set U, € M of z such that ¢ : 771 (U,) — U, x F with ¢ compatible with the natural projection

onto U,. That is, the following diagram commutes:

17X

It is in this sense that the space E looks locally like a product. The space F' is called the fiber of the fiber
bundle and U is called the trivialising neighborhood. A trivial example is given by £ = M x F with 7
defined as its canonical projection and ¢ = id.

Again, a morphism between two fiber bundles (Ey, My, 71, F1) and (Esy, Ma, mo, Fy) with trivializations
o1 :m H(U1) = Uy x Fy and oo : 7151 (U3) = Uy x Fy, is given by the first commutative diagram with

the additional constraint

U2XF2<;7T2 4 *>U1XF1

R

UQ%UH

Some authors require that, for a base point p € B, 7! (p) = F, or that 7~ (p) = F for every p. For a

covering space and a manifold, the former and later respective requirement is a direct consequence of the



respective definition: recall that a covering space is a surjective map 7 : M —> M such that, for each
x € M, there exists a neighborhood U such that 7—! (U) is a disjoint union of open sets, each of which is
homeomorphic to U. The number of such disjoint open sets, called the evenly covered sets, is given by |F]|.
In this sense, a covering space is “locally discrete”.

If F'is a K-vector space of dimension n, then a fiber bundle is called a vector bundle of rank n,
provided that the restriction ¢| ., : 7t (z) = {2} x F = F, is a K-linear map. A morphism between
two vector bundles is, therefore, a morphism of two fiber bundles with the additional requirement that
I 7 t(z) — my ' f () is a K-linear map.

Much like a manifold with an atlas, we need to consider what happens if, for an x € M, we have
overlapping, trivialising neighborhoods U and V of a vector bundle; so let ¢y : 771 (U) > U x F and
v : 1 (V) =5 V x F be homeomorphisms. Observe that ¢y o ¢ is an endomorphism of (U n V) x F
(modulo relevant domain restrictions). Since both ¢y and ¢y are isomorphisms, @y ocpgl is an isomorphism
of the vector space {x} x F for each x € U n V. To be more precise, since we are assuming that U n'V £ &
and, in particular, x € U n V, the maps <pU|7r_1($) and ‘PV|7T—1($) are equal and well-defined isomorphisms
of vector spaces. Let gyy : U "'V — GL, (K) denote the function that assigns this isomorphism to x.
These functions are called transition functions. The inverse g;Ilj is defined by the K-linear isomorphism
(cpv 04,051)71 = @y o cp‘_/l, which is precisely gyy. That is, g;}] = gyy. Now for x € U n'V n W, the
composition of two such transition functions gyy and gyw is readily a K-linear isomorphism. However,
observe that ¢y oy, is an endomorphism of (U n V' A W) x F and that oy ooy = ¢u oidyaveaw ooy =
Yy o (go‘_,l o gov) o go{vl = (ng o ga‘_/l) o (cpv mp{vl). Thus, guw = guvgvw, which is called the cocycle
condition.

This additional information, of course, depends on the nature of F'. Regardless of what space F' is, the
restriction <p|7r,1(z) provides the sense in which each z € M is said to parameterise the space F,. Such is
the situation if M is a (differentiable) manifold and F is its tangent bundle T'M, in which case the fiber
F, is actually the tangent space T, M. The tangent bundle is constructed as the disjoint union of tangent
spaces T, M over x € M. Thus, the tangent bundle is a special case of the vector bundle. Corresponding to
the trivial fiber bundle, the trivial vector bundle is similarly given by £ = M x F where F is a vector space.
A line bundle is a vector bundle of rank 1. A special kind of vector bundle, called the tensor bundle,

comprises of vector spaces V over K and their duals V'V := Homg (V, K). For example, if

LD (V):=VOV®.0VeV eV'e..oVY

| copies k copies

called covariant tensors on V of rank [ and contravariant tensorﬂ of rank k, then a tensor bundle
may be defined as a disjoint union of (covariant and/or contravariant) tensors on tangent spaces T, M over
x € M. This machinery allows us to collect alternating contravariant tensors of rank k to define the vector
space AP (V) c(®F) (VV) of very special K-linear maps called exterior forms. In fact, the (vector) bundle
AR (T M) is constructed as the disjoint union over = € M of A¥ (T,Y M).

Bundles allow for a coordinate-free definition of fields: if w7 : TM — M is a tangent bundle, then a
vector field is a map f : M — T'M such that wo f = idy;. That is, a (covariant) vector field is a section of
the vector bundle. In similar vain, and according to our terminology, a contravariant vector field would thus
be a section of the bundle TV M — M. Similarly, a tensor field is a section of a tensor bundle. A section
of A¥ (TV M) over M is a special vector field, called the differential form of rank k or a differential k

1In Physics, this convention is reversed.



-form, the collection of which is denoted by QF (M). Differential forms allow integration on (orientable)
manifolds.

In the absence of a sensible notion of orientation, the natural generalization of this is a density. If V
is a vector space over K, a density is, in particular, a function p € Homg (V' X ... x V, K) such that, for any
T € Homg (V, V),

w(Tvy,....,Tv,) = |det T| p (v1, ..., vyn)

The concept of a density is closely tied with orientation. Let 0 € 0 (V') := Homg (V' x ... x V, K) be a function
such that for any T € Endg (V),

o(Tvy,....,Tv,) = sign(detT) o (v, ...,v,) .

Such a function which in addition satisfies |o (v, ...,v,)| = 1 for linearly independent vectors vy, ..., v, is
called an orientation.
Note that for w € A™ (V'Y), the map |w|: V xV x ... x V — K, defined by

|w] (V1 .eeyp) 1= |w (V1, .oy Up)]

(assuming that the field K has a valuation defined on it) is a density. If D (V) is the collection of densities on
V, then D (V) is a 1 dimensional vector space spanned by |w| for any nonzero w € A™ (V). This is because

if {v1,...,v,} are a basis for V and for any « € D (V'), we have equality of functions

o ( a (v, ..., Up) ) 1wl
|w| (v1y .oy vp)
The uni-dimensionality of D (V') follows since the functions above agree on the basis {v1, ..., v,}. Note that
the value |w| (v1, ..., vy, ) is nonzero, for otherwise w (or, equivalently, |w|) would be trivial.

Similarly, the obvious re-arrangement of the equation w = o |w| tells us that o (V') is uni-dimensional, as
well.

The density bundle D (M) is then a smooth (line) bundle over M, constructed as the disjoint union of
D (TyM) over z € M. By the above construction, it is clear that D (M) = A" (TY M) ® o0 (M), where o (M)
is the orientation line bundle on M where, for each x € M, the fiber is o (T,,M). Thus, if M is oriented,
then D (M) = A™ (TV M) and we have our familiar calculus on the manifold. A density, in general, is a
section of the density bundle. Therefore, for an n-dimensional manifold M, a density is a tensor field, which
in local coordinates x* at a point € M, may be written as o (x) dz' A dz? A ... A dz™ for some real-valued
function a.

The collection of densities is written as Q/° (M). To see why this makes sense, define Q=9 (M) :=
Q"9 (M) ®o(M) as the collection of twisted (n — g)-forms. A density is then a twisted 0-form viz. an
element of Q" (M) ® o (M). An alternative way to see this is sections of the tensor product of A7 (TM) ®
A" (TYM)®o0 (M) = A" 9(T¥M)® o (M). This explains the function « (x) € A° (TM) = C* (M). Thus,

for example, an element of Q=1 (A7) may be of the form, in local coordinates z* at a point = € M,

o () 6% ® (da' A dz® A ... Ada™)

for some j € {1,...,n}.



This allows us to define a graded module of twisted forms

Ql* (M) = é_L)QI*fH (M)
q=0
This is the de Rahm dg-algebra Q* (M) under wedge product but with the index reversed. That is, we have
an exterior derivative d : Q=9 (M) — QI=¢+1 (M),

We need some more machinery. A fibered bundle (not ‘fiber’) is a bundle 7 : E — M such that 7 is a
submersion. That is, the pushforward T'x is also surjective. If F is a vector bundle, then surjectivity of T'r
implies that the linear map T,7 : T, — Ty ()M has rank equal to the dimension of B. Therefore, every
fiber bundle is a fibered bundle. However, for a fibered bundle, the fibers 7=! () may not be the same space,
let alone a vector space. For example, the natural projection map in the first variable 7 : R?\ {(1,0)} — R
is of course surjective and a submersion. However, 71 (1) is disconnected, unlike 7! (x = 1).

Recall that if dim E = m > dim M = n, then T'w is surjective. This is also useful in proving that the
surjective map w : B — M is a submersion if and only if for all y € F, there exists a chart (U, ¢) centered

at y and a chart (7 (U), ) centered at f (p) such that the following diagram commutes:

U u 7w (U)
¥ P
(—a,a)™ x (—a,a)™ ™ pr; > (—a,a)”

In general, surjective submersions are open maps. Thus, fibered bundles admit local sections s € T' (U, E)
for some open subset U of M. That is, for each y € E, 3 open subset U 3 7 (y) of M and a function
s : U — FE such that m o s = idy. Two local sections s; and sy about © € M are equivalent if, with
respect to some adapted coordinate chart (and hence any adapted chart[2]), all the partial derivatives of s;
and so agree up to order k at x. This is clearly an equivalence relation, justifying the use of the symbol
4% (s) (x) for the equivalence class of sections s at x whose partial derivatives agree up to order k. Let
J¥(E) = {j* (s) (z) : 2 € M} and define the jet bundle 7(*) : J* (E) — M with 7% (j* (s) (2)) = . It is
customary to identify J° (F) = E and 7 = 7. If (U, ¢) is a chart on E, then the k-induced chart (U’“, ga’“)
on J* (E) is defined by U* = {j* (s) (z) : s (z) € U}. This makes J* (E) — M a fibered manifold with the
fiber over z € M being defined by {;j* (s) (z) : s € I' (M, E)}. Note that if sections s; and sy agree up to
order j, then they agree up to all orders before i. Therefore, for i < j, we can define 7T; : JI(E) — J'(E)
via 7} (77 (s) (x)) = j* (s) (x). Note that, for m < i < j, 7j* = m* ow’. This constitutes an inverse system

and allows us to construct the infinite jet bundle J* (E) as an inverse limit in k of J* (E).

Background on Koszul Complexes

Let M be a module, R a ring and let MY be the product of M with itself g times. We know that we can

construct the module of alternating tensors A?M via

M? —— P

//7
M
,

ANIM



where P is any R-module. This allows us to define the skew-commutative graded algebra

A*M = PA"M

with multiplication A*M x ALM —> A*+ A via (a,b) » a A b= (=1)" b A a. For w: M —> R, the map
mg: M7 — AT

defined via

is easily seen to be multilinear and hence factors through
Wyt ATM — AT M

If a e A¥M and be AT"FM, then w, (a A b) = wy (a) Ab+ (—1)k a A wg—_, (b). To show this, consider the

diagram

MF x MO 5 MY
! |

AM x ATFM — s AIM

coming from two different constructions placed side-by-side. This diagram commutes because the upper

arrow is a canonical isomorphism. The next thing to note is that

~

wp(a) Ab+ (=) anw, k() =wi(@) Abrda+(—=1)"aAnw, r(b)AD

Couple this with wiAr = my and apply iteratively.
From this, it follows that w, o w,4+1 = 0 for all n and we have ourselves a complex, called the Koszul
Complex of w. To show this by (strong) induction, if we agree to let A=*M = {0}, A°M = R, A'M = M

and wi = w, then the case for n = 0 is trivial. For n = 1,

wiowa(anb) = wi(w(a) Ab—anw(b))
w(w(a)b—w(b)a)
= w(aw®) —wdw(@) =0

Let a € A*M and be AT='F M to give

(wgowg 1) (@nb) = wy(wr(@) Ab+ (=) anwe 1 k(b))
= wy (Wi (@) A D)+ (=1)* wy (@ A wemr—k (D))
= wro1 (wk (@) A b+ (=1)" wi (a) A wia (B) +
(=" [ (@) A wq i (8) + (1) @ A w14 (8)]

= (=D wr (@) Awp—1 (0) + (=) [ (@) Awg—g (B)] = 0



Lagrangian Field Theory

Consider the mapping space F = I' (M, E) < Homp,ff (M, E) of sections of E over M. Homp;fs (M, E) is
a manifold in its own right, modelled after the Fréchet space, assuming that M and E are nice enough.
Loosely speaking, M plays the role of the event space — the configuration space — and E plays the role of
the universe of possible states. If F is a tangent bundle, then E is called the configuration manifold. If E is
the cotangent bundle, then F is called the phase space. If M = M" is one-dimensional, then we can think
of F as modelling particle’s behavior over time on E = R3, say. Such is the case for Newtonian mechanics.
A similar description holds for Minkowksi space M = M™. In Hamilton’s mechanics, the manifold M is
replaced with X x M! for some symplectic manifold X. The formalism of fields holds generally in that F
plays the role of functions modelling a particle’s behavior and, therefore, houses the phase space M c F. In
physics parlance, an element of F is called a field. Thus, if £ = M x R is the trivial bundle, F comprises of
scalar fields. For multiple fields ¢; considered simultaneously over bundles £;, the fiber product £ = X, E;
may be utilized.

The goal of Lagrangian Field Theory is to determine functions ¢ € F that satisfy the Lagrangian operator
used in conjunction with Principle of Least Action. That is, if S € Homp;ss (F,R), then M is the critical
manifold, (ideally) determined by functions satisfying dS = 0. One natural setting for this is in terms of
differential forms on F and twisted forms on M. This allows us to model the Lagrangian density L : F —
D (M).

To see why, we first construct a double complex Q*I*/ (F x M) of fields F and twisted forms on M,
with the (total) exterior derivative written as D = & 4 d, where d : Q=4 (M) — Q=9+ (M) and § :
QF (F) — QFF1(F) obeying d? = 62 = 0 and dé = —dd, so that D? = 0. For a fixed p, a € QP (F) and
B e Ql=al (M), we write d (o A B) = (—1)” a Adf. One natural interaction of this double complex is captured

in the following:

Lemma 1 Let ¢ € F =T (M, E) c Homp;sr (M, E) and assume that M is compact. Then, TyF is naturally
isomorphic to the pullback vertical bundle Q° (M; ¢* (E/M)) =T (¢* (E/M) @ A°T¥ M) =T (M, ¢* (E/M)).

Proof. Firstlet proj; : E = M x X — M be a trivial vector bundle. The general argument is similar. In this
case, F = Homp; s (M, E) = C* (M, E). We must first construct the tangent bundle of E. One component
of this is the tangent bundle mp; : TM — M. Moreover, since X is a vector space, T, X = X x {z} (so that
TX = X x X). Thus, for e = (m,z) € M x X = E, we can have the tangent space T.E =~ T,,M x T, X.

We, therefore, have the following diagram:

E=MxXx —20
WET WJVIT
. Tproj,
0 —— ker(Tproj,) TE ™ 0

where
™™ = | | TwM, TE=| |T.E=~ || TMxT,X =TM xTX
meM el (m,z)eE
and, for each e = (m, x), ker. (T'proj;) = {m} x X. Therefore, ker (T'proj;) = M x X x X = M x TX is the
vertical tangent bundle E/M = VE of E.
Now let ¢ be a section of £ over M and consider the pullback bundle 7g/ys : ¢* (E/M) — M and the

diagram



M

*VE ——— VE ' TE
idas

TE/M

M— s MxX

The sections of this bundle — a dotted arrow above after a choice of § — form the collection Q° (M; ¢* (E/M)).
The pullback bundle is constructed via the usual ¢* (E/M) = {(m,§)e M x VE : ¢ (m) = (rgoi)(£)}.
Now, F comprises of paths ¢. defined € : [ — ¢, over a real interval I containing 0 with ¢g = ¢ such that
tangent vectors s € TyF satisfy the expected s = d%d)e|5:0. The second ingredient we need is the observation
that s € TyF <= s(m) € Tyl € VE. This gives us our 5 and hence establishes the correspondence. m

Lagrangian densities L : F —s D (M) are elements of Q%/°l (F x M), where L (¢) is a density. A zero-
form on F is a smooth function and gets absorbed in the density. Lagrangians are local. Loosely, this
means one considers energy distribution around the ‘neighborhood’ of a particle whose Lagrangian is under
consideration.

This can be made mathematically precise. Consider the form a € QPI=9 (F x M) at a point (¢, m) €
F x M. If &,...,& € TyF, the twisted (n — q)-form a(g m) (&1, .--,&p) at m is said to be local if, for some
integer k, o only depends on j* (¢) (m) and j* (&) (m) for 1 < i < p. This definition can be recast in
terms of sections, and requires the following ingredients: by Lemma [1] each &; corresponds to a section of
¢* (E/M) = ¢* (VE); the k-jet bundle 7(¥) : J*E — M gives us p-forms QP (J*E/M), and, of course, we
need to pull back the bundle Q=4 (M) — M through 7(*):

QP JH(VE) r®* Q) —— Ql-4l(M)

T

JH(VE)

T

JEE M

Together, these bundles over J*E give us the bundle o : QF (J*E/M) ® r®*Ql=d (M) — J*(E). A
section of this bundle is a local form. In particular, local forms depend on vector fields on M.
The collection of such local forms gives us a subcomplex (Qp ol (Fx M), d) with differential

loc

d: Q" (J*E/M) @ e B l=dl (M) — QF (JFHE/M) @ D al=a 1 ()

Takens’ Theorem

The main theorem, originally presented in [6], is the following:

Theorem 2 (Takens) Forp > 0, the complex (Qp’l'l (F x M) ,d) of local (twisted) forms is exact, except

loc

in the top degree |o] =0

This follows directly from the following generalization:



Theorem 3 (Takens) Let E — M be a submersion, p € Z~q and let V; — E be vector bundles for

i=1,...,p. If
v=][v
E

is the fiber product over E, ¢ € T (M, E) is a section, and if we let V, be the space of sections of $*V —> M,
then the subcomplex (QO" (Vo x M), d) of forms a (¢, &1, ..., &p) which are R-multilinear in &;, is exact,

loc,mult

except in the top degree o = 0.

The forms a (¢, &1, ...,€,) depend locally on ¢ and on sections §; of ¢*V;.
The former follows from latter for, say p = 1, if we agree to call this case that of the trivial vector bundle
E x {#} — E. We have V4 =T (M, E) by virtue of commutativity of the diagram

PV Ex{s}=V
proj;

M E

since ¢*V = {(m,eq) € M x V : ¢ (m) = proj; (e, *) = e}, which is just the graph of ¢ and, therefore, corre-
sponds to the image of ¢.

We want Q?O’;mult (V4 x M) to correspond to €2 ;L’l (F x M). What we have at our disposal is a fibration
v L E from v 2% V; =% E with moproj; = wjoproj; for all 4,5 € {1,...,p}. We assume that F
is connected, in which case all fibers V; are isomorphic. Thus, V is a vector bundle over E with fibers
isomorphic to V;. We want to consider bundles over M, so it is natural to invoke pullbacks, in which
case ¢*V = {(m,v) e M xV : ¢ (m) =11 (v)}. The form o € Q?(;;mult (Vs x M) is local when it depends
on the k-jet of the section ¢ of E/M and the k-jet of sections &; of ¢*V;. To see this, first observe that
Ty (M,V) = Vy, thus justifying the replacement for F and the choice of section ¢. The isomorphism holds
because each unlabelled dashed arrow in the diagram below is an element of Vy. The latter part of the
definition is justified as a consequence of Lemma In fact, if all of the vector bundles are replaced with

the vertical bundle, then the proof of Lemma [1| tells us that Q7 Il (F x M) is the antisymmetric part of

loc
0,e
Qloc,m,ult

forms are isomorphic to ordinary forms.

(Vg x M). Finally, the bundle ¢*V — M can be given a consistent orientation, so that twisted

Note that the sections ; correspond to f;,g; : M — V; and that m; o f; = m; 0 g; = ¢ because ¢*V} is

the categorical pull-back. The pull-back lemma implies that the complete diagram commutes:

The proof is found in [3], pp 188-190.
Proof. Let 7 : E — M be a submersion with M of rank m and let 7 (eg) = mg. Let (U,x) be chart
containing mg such that W = F x U =~ 7~} (U) with F a rank f vector space. After appropriate local



N
trivializations of V; on W, we can write, say, a € Qlov malt (

Vo x M) as

a (4,1, 8) = Dy, (0) 06108, (1)

The indices n; would have been simpler, if we had V4 = F. However, since sections are of ¢*V over M
and V is a fiber product of V; (over E), each n; = (n;,,n,,...,n;,, ) is a multi-index and the operator

omi = ('7’1”1 0;“2 ...0m™ in a chosen coordinate system x = (xl, .y xm). The order of 0™ is given by

m
|n2| = Z nij .
Jj=1

Since « is local, by definition, for some k € Z, each ay, . n, depends only on the k-jet ¢ and so, we can

write
P

Qrnyoimy  T* (B/M) — 70" (Q1 (M) @ Q" v,

i=1
where (%) . J¥(E/M) — M. In order to define a complex, we need to have an increasing index, which

we can sort by order of the (partial) derivative. One problem, however, is that the order of 0™ is agnostic

about the permutation of the indices n;;. If we let

p
- Z In
i=1

where |n;| = n;, +ni, + ... +n,,,, we can construct an increasing filtration, for each g,
Fhchhc.cFySFyy1 €.
with the differential dy : Fy — Fn+1. In local coordinates, the differential would be

d (Z Qormy (0) amgl...a"pgp) = U1 gy (8) A (716100 E,)

Note that because the grading is based on order of the derivative, and the derivative 0" is independent of

the choice of local coordinates. Let 7, be the collection of sections a below:

a:J¥(E/M) _>® &® «®* symlnl (TaM) @ 7V @ =B (07 (M) (2)

1= 1\nl\<k

loc,mult

We construct Gr¥’ (QO 4 ) as a limit of the following cone

fij

~N S

F
Grq

Ji

Jj

where, for 7 < j, the transition f;; map is the pullback of 7’ : J7 (E/M) — J*(E/M) via 7’ (57 (s) (@) =

j*(s) (z). The idea here is that each (coordinate free) derivative 0™ has a corresponding symbol in



Syml™il (TM) and the degree N is the sum of the degrees |n;|. This allows us to write

GTF (Q?c;g mult) @ FN+1/FN - @ CTVT‘N

=0
In fact, the differential dy induces
d:Grl — Grifh
via @ as
P
d : & 7O Sym!™l (TM) @ e * VY @ 7B (Q4 (M)
i=1n;| <k
— é ﬂ(kH)*S’ym'”*l (TM) ®ﬂ-(k+1)*‘/iv ®ﬂ_(k+1)* (Qq+1 (M))

Modulo tensorization with V¥ and the pullback, d can be described by the map

éSym* (TM)® Q4 (M) — éSym* (TM)® Q4+ (M)
1 1

p
in local terms: if {e;} is a basis for TM, s € ) Sym* (IT'M) and ¢ € Q4 (M), then

j=1

p
s®( <Z (Zl ® ... ® (e; at the ith place) ® ... ® 1) s) ®e A ¢ (3)

l i=1

We can, therefore, consider the complex
P
part of degree N + ¢ of Q)Sym* (T M),
1

tensored with Q9 (M). The chain map for this complex is given by Eq . We will be done if we can show
that this complex is exact, except in the top degree. We do this point-by-point, so let mg € M. Our focus

then turns to a complex with components
P
Q)Sym* (T, M) @ A (T, M)
1

Recall that

p
Q) Sym* (T, M) = Sym* (@Tm0 M)
1

The homeomorphism A : Ty, M — Ty M x Tppo M X ... x Ty M (p-times) given by t — (t,1,...,t) allows
jd

us to identify T,,, M within @T,,, M. Thus, we can write, for some subspace S,
1

b
PTneM = S®A(Trn,M) = S@® Ty M
j=1

10



which allows us to re-write
Sym™ (é—)TmOM> = Sym* (S ® Ty, M) = Sym™ (S) ® Sym™ (T, M)
1
Thus, the complex locally is
éSym* (T M) @ A (T, M) = Sym* (S) ® Sym* (To M) @ A (T, M)
1

The homological degree of Sym™ (S) is zero and the degree of latter two combined is g. The complex is
then (Sym* (T, M) ® A7 (T, M) ,d) where d is again induced by Eq : if {e;} are the basis for T,, M
and {e'} are the dual basis for T,y M, then

d: Sym* (TrnyM) ® A (Tyy, M) —> Sym* (Ty M) @ AT (T, M)
given by
s®Cm Y () ® (¢ A Q)
l

Note that if we write T;,,,M = A® B, then

Sym* (A®@B)®A* (A @ BY)

1

Sym* (A) ® Sym™ (B) ® (A* (A7) ® A* (BY))
(Sym™ (A) @ A* (A7) ® (Sym™ (B) ® A* (BY))

12

Breaking up the finite dimensional space 7;,,M into one-dimensional components gives us one-dimensional

respective complexes. Moreover, the equivalence

ANM(AY®BY)= P A"AYQA’BY

a+b=q

tells us that to check acyclicity at the top degree, we might as well focus on the case when dim 7}, M = 1.

Thus, the case we have is that of

Sym™ (K) @ A* (KV)

lle

K[X]® (KeK")
(KX]eK)@(K[X]®KY)

lle

for a field K of characteristic zero and the only non-trivial differential mx we have is
0— K[X]2K[X]®K ™ K[X]®K" ~ K[X] — 0
If v is some scalar, then f(X)®v = (7/)(X)®1 «— (vf)(X) = g(X) gets mapped to d(g (X)) =

Xg(X)®dX = Xg(X)®1 «— Xg(X) and so, mx is multiplication by X. The homology in degree 0 is
Hy = kermx/{0} = {0} whereas homology in degree 1 is H; = R[X]/mx (R[X]) = R.

11



Another way to show the same argument is as follows: define homotopy H as

0 if degs =0 and if deg( = dimT,,,, M
H = .
(S © C) deg s+dim T}mOMfdeg g?ael (S) ® e (C) otherwise

and extend linearly, where o, : T,y M — K is defined by ¢, (¢) (p1,.-spq9—1) = C(e1,p1,.s pg—1). If
P Sym* (T M) @ A1 (T, M) —> Sym® (T,,, M) @ A™ (Toy, M) < Sym* (Tpn, M) ® A (T, M) where

dim T,,,, M = n and P defined using the natural maps available.
v Sym* (T M) @ A (T, M) ——2—— Sym* (Tjny M) ® A (T M) ——s ...

N T

H\Zd P H\ Il
W Sym* (Tyn, M) ® AY (T, M) —d Sym* (Tpy, M) @ AT+1 (T M) — d

Now, if degs = 0 and if deg( = dim T},,, M, then d is the trivial map and so is dH + Hd and the identity

map coincides with P. In the other case,
(dH+ Hd)(s®() = dH(s®()+Hd(s®()

1
= d (degs +dim T},, M — deg CZZ:aEZ (5) ® e (C)> o <le ((61.8) ® (el " C))>

1
- deg s + dim T}, , M — deg Czl:d (0 ()@ 1er () zl:H (o) @ (el ~¢)

1 .
B degS + dim7T,, M — deg(zz (ej'ael (S)) ® (ej A le (C)) +
mo T

1
0O.i (€. i (€
Zl:degel.s—i—dimeOM_degel /\C; i (€1.8) ® Lej (e /\Q)

1
= dogs + dim Ty M — olegcZZ (65:0ct (s)) @06 +
mo T

1
zl:deg er.s +dimT,,, M — deg e

" C;aej (e1.8) @15 A C

" degs + dim J{MOM — deg CZZI (e1-0et (5)) @ C +
Zl:deg er.s + dianlmM —degel A Cae’ (e1:5) ®C
T degs+ dim;”mOM - dcg(s ®¢+
Zdeg en.s + dianlmM —degel A C (5 + (=1 e1de (s)) ®¢

!
= s®(-—P(s®()

Thus, dH + Hd = id — P.
Now, to show that this local argument can be extended globally, let {W; }jE ; be a cover of £ and let
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{Xj};er e a partition of unity {W;}, ; such that the closure {e: x; () # 0} < W;. That is, {x;} is a
collection of maps of compact support on E to [0, 1] such that for every e € E, (a) 3 a neighborhood V c FE
of e such that all but finitely many x, are zero and (b)

ZX;‘ (e)=1

We can write a corresponding equation to in local coordinates on each Wj, end up with homotopy H;
as above and then define homotopy H () = ¥ H; (x; (c)), we again have

id—(dH; + H;d) = P : Sym* (S)@Sym* (T, M)@A (T, M) — Sym* (S)®Sym® (T,,, M)®A" (T, M)

glued together to give id — (dH + Hd). That is, to yield a map Fy — Fn_1. If a € Fy such that da = 0,
then

o = (id — (dH + Hd)) (o) = id (o) — (dH + Hd) (o) = a — dH () + Hd () = a — dH («)

is in Fy_1. Thus, a = o + dH (a). Note that d(a’) = d (a« — dH (a)) = da — d (dH («)) = 0 and so, o’ is
closed. Thus, we can repeat the above argument to have o” closed such that o/ = o” + dH (o), eventually
ending up with o/™) € F_; and a = M) 4 d (terms) = d3. m

In Classical Field Theory, the k-jets for Lagrangian Densities L (generally called source forms) are
usually restricted to the case of k = 1 and so, it defines a (1, | — 1|)-form, called a variational 1-form ~ with
DL = §L + dv. By Takens’ Theorem, this 7 is guaranteed to exist. The decomposition of DL is unique,
up to df where f is a local (1,| — 1|)-form. The Euler Lagrange Equations, following the principle of least
action, are given by DL = 0, which cut out phase space M of fields, via differential equations of a system
under investigation. Moreover, « can also be used to determine a conservation law of the Lagrangian system

under consideration. This is the content of [7]. In fact, the pair (L,~) defines a field theory.

Future Work

We have seen that jet bundles describe the way local forms in general and Lagrangians in particular operate,
answering questions about existence of Lagrangians and their variations. However, there are cases where
the action functional may not exist and thus Principle of Least Action fails to be defined, even if, as is
always the case, the variation is always defined. Dissipative forces are a guiding example, and a workaround
for them might be in extension of the phase space or considering multiple interacting systems on the same
manifold. This leads to multiple Lagrangians in different coordinate frames, which raises issues of gluing the
Lagrangians. A possible answer is via multivalued jets[I] for Classical Field Theory. A natural step further
is to use Lie algebroids as a generalization of the jet bundles. This might offer a way to strengthen the
variational complex for general field theories. One challenge that may arise is that gluing of these ‘higher
jet bundles’ may not behave very nicely. To aid this development, Lie algebroids can be treated as L,
spaces[d], allowing ready translation to the gluing problem. Our future line of work is then an investigation
into the translation of the infinite jet bundle as a Lie algebroid first and, later on, applying it to a variational

bicomplex for general field theories.
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